結合 EMDR、SE、阿德勒、DBT、SMART、PPN、TF-CBT、基模療法、TRE、薩提爾、藝術治療、音樂治療及頭薦骨,配合經顱磁刺激TMS與藥物,提供貼近個人需求的整合資源,療癒創傷。

WHAT'S NEW?
Loading...

憂鬱症與免疫力、身體發炎、新陳代謝有相關性?認識免疫代謝型憂鬱症

認識「免疫代謝型憂鬱症」(IMD):一種需要精準治療的憂鬱症亞型

如果您或您的家人可能正在經歷一種特殊的憂鬱症,它不僅影響情緒,還與身體的免疫系統和代謝功能息息相關。我們稱之為「免疫代謝型憂鬱症」(Immuno-metabolic Depression, IMD)。了解 IMD 的獨特之處,是邁向更有效治療的第一步。

一、什麼是免疫代謝型憂鬱症?

免疫代謝型憂鬱症(IMD) 佔所有憂鬱症患者的約 20% 到 30% 。它不是單純的情緒低落,而是由「 情緒、代謝、發炎 」三方面共同構成的生物學亞型。

📌 IMD 的三大特徵

區塊 核心問題 典型症狀與表現
I. 症狀(非典型) 能量與獎勵系統失調
  • 嗜睡 :睡眠時間過長,睡不飽。
  • 疲勞/無力 :持續感到精疲力盡。
  • 快感缺乏 :對任何事情都失去興趣和愉悅感。
  • 食慾增加與體重增加 :特別渴望高熱量食物,體重明顯上升。
  • 鉛樣麻痺 :感覺手腳像灌了鉛一樣沉重。
II. 慢性發炎 身體處於慢性低度發炎
  • 發炎指數升高 :抽血檢查常發現 C-反應蛋白(CRP)或促炎細胞激素(如 IL-6)水平偏高。
III. 代謝異常 體重與血糖調控失衡
  • 肥胖 :尤其是腹部脂肪堆積。
  • 胰島素/瘦素抵抗 :身體無法有效利用胰島素或調控飽足感。
  • 血脂異常 :如膽固醇或三酸甘油酯過高。

A. 非典型、能量相關的憂鬱症狀 (Atypical, Energy-related Symptoms)

IMD 患者常表現出與典型憂鬱症(如失眠、食慾不振)相反的症狀模式,主要體現為「能量缺乏」的表型:

  • 嗜睡(Hypersomnia): 睡眠時間過長。
  • 疲勞/精力不足(Fatigue): 持續的疲憊感。
  • 食慾增加與體重增加(Hyperphagia & Weight Gain): 食慾旺盛,尤其偏好高熱量食物,導致體重顯著上升。
  • 鉛樣麻痺(Leaden Paralysis): 感覺四肢沉重或僵硬。
  • 快感缺乏(Anhedonia): 失去享受愉悅的能力,與獎勵系統失調有關。

B. 全身性低度發炎 (Systemic Low-grade Inflammation)

患者體內存在慢性、持續的低強度發炎狀態,即使無明顯感染。關鍵生物標誌物(Biomarkers)包括:

  • C-反應蛋白(CRP) 水平升高(常用於篩檢)。
  • 促炎細胞激素(Pro-inflammatory Cytokines) 水平升高,如白介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)。
  • 糖蛋白乙醯化(Glycoprotein Acetyls) 水平升高,作為廣泛炎症的標誌。

C. 代謝異常 (Metabolic Abnormalities)

IMD與心血管代謝疾病風險高度重疊,常見以下代謝功能障礙:

  • 肥胖(Obesity): 尤其是腹部脂肪堆積(內臟脂肪)。
  • 血脂異常(Dyslipidaemia): 如三酸甘油酯或低密度脂蛋白(LDL)異常。
  • 胰島素與瘦素抵抗(Insulin and Leptin Resistance): 影響糖代謝和食慾調節。

IMD 患者的憂鬱症狀,與身體的慢性低度發炎和代謝紊亂高度相關,這也導致他們的心血管疾病和糖尿病風險更高。

💡 識別重點: 症狀群集與生物標記的結合

  • 在憂鬱症患者中,只有約 27% 具有低度炎症(CRP > 3 mg/L)。
  • 非典型、與能量相關的症狀 (如食慾/體重增加、嗜睡)是區分 IMD 的核心指標,因為它們與免疫代謝參數(如 CRP、BMI、瘦素)的相關性,比具有相反症狀(食慾/體重減輕)的患者更為顯著。
  • 遺傳學證據 也支持這一點:只有伴隨食慾、體重或睡眠增加的憂鬱症患者,才攜帶較高的免疫代謝特徵遺傳風險變異。

二、 免疫代謝型憂鬱症:精準治療

鑑於 IMD 患者對標準抗憂鬱藥物(如 SSRI/SNRI)的反應往往較差,精準精神病學應鎖定其生物學病因(炎症、代謝、能量代謝)進行干預。精準精神病學的目標是根據患者的生物類型(biotype)提供特定的、基於病因學的治療方法。以下是針對 IMD 患者的潛在個人化治療策略。

藥物干預(Pharmacological Interventions)

治療類別 建議藥物/策略 精準適用對象與依據 作用機制與臨床意義
標準抗憂鬱輔助 Bupropion 作為 SSRI 的附加治療,尤其對: 1. BMI > 35 kg/m² 的患者。 2. 基線 CRP 水平較高的患者。 機轉: 作為 NDRI (去甲腎上腺素-多巴胺再攝取抑制劑),能有效增強多巴胺傳導,改善 IMD 核心的快感缺乏和疲勞症狀。具有減輕體重的特性。
抗發炎藥物 TNF 拮抗劑 (例如 Infliximab)、MinocyclineCelecoxib 有發炎症據的患者 (尤其是 TNF 拮抗劑在基線 CRP 較高時效果更顯著)。 機轉: 直接作用於發炎通路,減少細胞因子等發炎標記物對大腦功能的干擾,潛在性地減輕憂鬱症狀。
降血脂藥物 Statin (他汀類藥物) 伴有高膽固醇或心血管風險的 IMD 患者。 機轉: 具有神經保護、抗氧化和抗炎作用。統合分析顯示其具備顯著的抗憂鬱作用。
抗糖尿病藥物 Pioglitazone (Thiazolidinedione(TZD) 類藥物) 伴有胰島素抵抗的 IMD 患者。 機轉: PPAR-γ 激動劑,能改善胰島素敏感性,並在憂鬱症試驗中顯示出顯著的整體治療效果。
猛健樂、週纖達 (GLP-1 受體促效劑) 伴有肥胖和代謝紊亂的 IMD 患者。 機轉: 有效預防和減輕肥胖。對減輕憂鬱症狀有小的但顯著的效果,通過改善代謝核心問題間接作用於情緒。

三、免疫代謝型憂鬱症:營養與生活方式建議

生活方式的調整直接作用於 IMD 的病理生理學機制(炎症、肥胖、胰島素抵抗),是精準治療的基礎。

干預方式 治療目標 作用機制與科學依據
運動治療 降低炎症、優化能量與獎勵系統。 機轉: 運動可有效降低 CRP 水平、降低瘦素 (Leptin),並增強多巴胺傳導。這特別能改善 IMD 核心的快感缺乏疲勞與「努力型決策」相關的症狀。
實證: 跑步療法在改善身體健康結果(如體重、腰圍和炎症指標)方面,被證明優於單獨使用 SSRI 治療。
營養干預 對抗慢性發炎,優化代謝功能。 原則: 避免親炎症飲食,促進抗炎飲食模式。旨在推廣地中海飲食的干預措施,已被證實能有效減少成人憂鬱症狀。
行為干預 實證: 著重於健康飲食的行為干預 (特別針對情緒性進食和對零食的渴望),對 IMD 的軀體和非典型症狀有積極影響。

✅ 運動治療:啟動身體的「抗炎與獎勵機制」

  • 效果: 運動是公認有效的抗憂鬱方法。它能直接降低身體的發炎標誌物(如 CRP),並促進大腦的多巴胺(Dopamine)系統,有助於減輕 IMD 患者的快感缺乏和疲勞。
  • 建議: 建議採取規律、尤其適度到 高強度的運動。研究顯示,持續的跑步等運動,在改善體重、腰圍和炎症方面,效果甚至可能優於單純的藥物治療。

✅ 營養干預:對抗發炎的飲食策略

原則: 避免高糖分、高飽和脂肪的「促炎症飲食」,轉向以蔬菜、抗氧化劑和纖維為主的「抗炎症飲食」。

最佳選擇:

  • 地中海飲食(Mediterranean Diet): 這是一種以大量 蔬菜、水果、全穀物、豆類、魚類、堅果 和優質脂肪(如橄欖油)為主的飲食模式。多項研究證實,遵循地中海飲食能顯著減輕重度憂鬱症狀。
  • 關注飲食行為: IMD 患者常有情緒性進食或渴望零食的傾向。學習識別並管理這些飲食行為,對於控制體重和非典型憂鬱症狀非常關鍵。

IMD 的精準治療強調 根據患者的生物標記(如 CRP、BMI)來選擇最合適的藥物組合 ,並將 高強度運動和抗炎的地中海飲食 作為基礎治療,從而達到更全面的治療效果。

免疫代謝型憂鬱症是一種複雜但可治療的疾病。通過您信任的各科別醫師、營養師、教練,結合藥物治療(特別是針對發炎和代謝的藥物)、規律運動以及抗炎飲食,我們可以共同管理 IMD 的情緒與身體症狀,實現更全面、更精準的康復。

References

  1. Marx W, Penninx B, Solmi M, et al. Major depressive disorder. Nat Rev Dis Primers. 2023;9(1):44.
  2. GBDS. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159): 1789 – 1858.
  3. Herrman H, Patel V, Kieling C, et al. Time for united action on depression: a lancet-world psychiatric association commission. Lancet. 2022;399(10328):957 – 1022.
  4. Berk M, Kohler-Forsberg O, Turner M, et al. Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatr. 2023;22(3):366 – 387.
  5. GBDS. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life ex- pectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2133 – 2161.
  6. Yu B, Zhang X, Wang C, Sun M, Jin L, Liu X. Trends in depression among Adults in the United States, NHANES 2005-2016. J Affect Disord. 2020;263:609 – 620.
  7. Goldney RD, Eckert KA, Hawthorne G, Taylor AW. Changes in the prevalence of major depression in an Australian community sample between 1998 and 2008. Aust N Z J Psychiatry. 2010;44(10):901 – 910.
  8. Ten Have M, Tuithof M, van Dorsselaer S, Schouten F, Luik AI, de Graaf R. Prevalence and trends of common mental disorders from 2007-2009 to 2019-2022: results from The Netherlands Mental Health Survey and Incidence Studies (NEMESIS), including com- parison of prevalence rates before vs. during the COVID-1D pandemic. World Psychiatr. 2023;22(2):275 – 285.
  9. Chen S, Ford TJ, Jones PB, Cardinal RN. Prevalence, progress, and subgroup disparities in pharmacological antidepressant treatment of those who screen positive for depressive symptoms: a repetitive cross-sectional study in 19 European countries. Lancet Reg Health Eur. 2022;17:100368.
  10. Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M. The new field of ‘ precision psychiatry ’ . BMC Med. 2017;15(1):80.
  11. Hotamisligil GS. Inflammation, metaflammation and immuno- metabolic disorders. Nature. 2017;542(7640):177 – 185.
  12. Bian X, Xue H, Jing D, Wang Y, Zhou G, Zhu F. Role of serum/ glucocorticoid-regulated kinase 1 (SGK1) in immune and inflam- matory diseases. In fl ammation. 2023;46(5):1612 – 1625.
  13. Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13(2):100 – 109.
  14. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22 – 34.
  15. Sørensen NV, Benros ME. The immune system and depression: from epidemiological to clinical evidence. Curr Top Behav Neurosci. 2023;61:15 – 34.
  16. Milaneschi Y, Lamers F, Berk M, Penninx B. Depression hetero- geneity and its biological underpinnings: toward immunometabolic depression. Biol Psychiatry. 2020;88(5):369 – 380.
  17. Vancampfort D, Stubbs B, Mitchell AJ, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. World Psychiatr. 2015;14(3):339 – 347.
  18. Foley ÉM, Parkinson JT, Mitchell RE, Turner L, Khandaker GM. Pe- ripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Mol Psychiatry. 2023;28(3):1004 – 1019.
  19. Sørensen NV, Frandsen BH, Orlovska-Waast S, et al. Immune cell composition in unipolar depression: a comprehensive systematic review and meta-analysis. Mol Psychiatry. 2023;28(1):391 – 401.
  20. Enache D, Pariante CM, Mondelli V. Markers of central inflam- mation in major depressive disorder: a systematic review and meta- analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24 – 40.
  21. Bot M, Milaneschi Y, Al-Shehri T, et al. Metabolomics profile in depression: a pooled analysis of 230 metabolic markers in 5283 cases with depression and 10,145 controls. Biol Psychiatr. 2020;87(5):409 – 418.
  22. Amin N, Liu J, Bonnechere B, et al. Interplay of metabolome and gut microbiome in individuals with major depressive disorder vs control individuals. JAMA Psychiatr. 2023;80(6):597 – 609.
  23. Julkunen H, Cichon ´ ska A, Tiainen M, et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023;14(1):604.
  24. Jansen R, Milaneschi Y, Schranner D, et al. The metabolome-wide signature of major depressive disorder. Mol Psychiatr. 2024;29:3722 – 3733.
  25. van der Spek A, Stewart ID, Kühnel B, et al. Circulating metabolites modulated by diet are associated with depression. Mol Psychiatr. 2023;28(9):3874 – 3887.
  26. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. As- sociation of serum interleukin 6 and C-reactive protein in child- hood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatr. 2014;71(10):1121 – 1128.
  27. Berk M, Forbes M. The parallel roads of neuroprogression and somatoprogression: implications for clinical Care. Am J Geriatr Psychiatry . 2024;32(8):968 – 971.
  28. Kappelmann N, Arloth J, Georgakis MK, et al. Dissecting the asso- ciation between inflammation, metabolic dysregulation, and specific depressive symptoms: a genetic correlation and 2-sample mendelian randomization study. JAMA Psychiatr. 2021;78(2):161 – 170.
  29. Howard DM, Adams MJ, Clarke T-K, et al. Genome-wide meta- analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22(3):343 – 352.
  30. Khandaker GM, Zuber V, Rees JMB, et al. Shared mechanisms between coronary heart disease and depression: findings from a large UK general population-based cohort. Mol Psychiatr. 2020;25(7):1477 – 1486.
  31. Tyrrell J, Mulugeta A, Wood AR, et al. Using genetics to understand the causal influence of higher BMI on depression. Int J Epidemiol. 2019;48(3):834 – 848.
  32. Perry BI, Upthegrove R, Kappelmann N, Jones PB, Burgess S, Khandaker GM. Associations of immunological proteins/traits with schizophrenia, major depression and bipolar disorder: a bi- directional two-sample mendelian randomization study. Brain Behav Immun. 2021;97:176 – 185.
  33. Meng X, Navoly G, Giannakopoulou O, et al. Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference. Nat Genet. 2024;56(2):222 – 233.
  34. Leday GGR, Vértes PE, Richardson S, et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive dis- order. Biol Psychiatr. 2018;83(1):70 – 80.
  35. Jansen R, Penninx BWJH, Madar V, et al. Gene expression in major depressive disorder. Mol Psychiatr. 2016;21(3):444.
  36. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Preva- lence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med. 2019;49(12):1958 – 1970.
  37. Frank P, Jokela M, Batty GD, Cadar D, Steptoe A, Kivimäki M. Association between systemic inflammation and individual symp- toms of depression: a pooled analysis of 15 population-based cohort studies. Aust J Pharm. 2021;178(12):1107 – 1118.
  38. Milaneschi Y, Kappelmann N, Ye Z, et al. Association of inflam- mation with depression and anxiety: evidence for symptom- specificity and potential causality from UK Biobank and NESDA cohorts. Mol Psychiatry. 2021;26(12):7393 – 7402.
  39. Alshehri T, Boone S, de Mutsert R, et al. The association between overall and abdominal adiposity and depressive mood: a cross- sectional analysis in 6459 participants. Psychoneuroendocrinology. 2019;110:104429.
  40. Frank P, Jokela M, Batty GD, Lassale C, Steptoe A, Kivimäki M. Overweight, obesity, and individual symptoms of depression: a multicohort study with replication in UK Biobank. Brain Behav Immun. 2022;105:192 – 200.
  41. Lamers F, de Jonge P, Nolen WA, et al. Identifying depressive subtypes in a large cohort study: results from The Netherlands Study of Depression and Anxiety (NESDA). J Clin Psychiatry. 2010;71(12):1582 – 1589.
  42. Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atyp- ical depression. Mol Psychiatry. 2013;18(6):692 – 699.
  43. Brydges CR, Bhattacharyya S, Dehkordi SM, et al. Metabolomic and inflammatory signatures of symptom dimensions in major depression. Brain Behav Immun. 2022;102:42 – 52.
  44. de Kluiver H, Jansen R, Penninx BWJH, Giltay EJ, Schoevers RA, Milaneschi Y. Metabolomics signatures of depression: the role of symptom profiles. Transl Psychiatry. 2023;13(1):1 – 10.
  45. Alshehri T, Mook-Kanamori DO, Willems van Dijk K, et al. Metabolomics dissection of depression heterogeneity and related cardiometabolic risk. Psychol Med. 2023;53(1):248 – 257.
  46. van Haeringen M, Milaneschi Y, Lamers F, Penninx BWJH, Jansen R. Dissection of depression heterogeneity using proteomic clusters. Psychol Med. 2023;53(7):2904 – 2912.
  47. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alter- ations in subgenual cingulate activity and mesolimbic connectivity. Signature Biol Psychiatr. 2009;66(5):407 – 414.
  48. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2017;42(1):216 – 241.
  49. Lasselin J, Karshikoff B, Axelsson J, et al. Fatigue and sleepiness responses to experimental inflammation and exploratory analysis of the effect of baseline inflammation in healthy humans. Brain Behav Immun. 2020;83:309 – 314.
  50. Zwiep J, Milaneschi Y, Giltay E, Vinkers CH, Penninx BWJH, Lamers F. Depression with immuno-metabolic dysregulations: testing pragmatic criteria to stratify patients. Brain Behav Immun. 2024;124:115 – 122.
  51. Badini I, Coleman JRI, Hagenaars SP, et al. Depression with atypical neurovegetative symptoms shares genetic predisposition with immuno-metabolic traits and alcohol consumption. Psychol Med. 2022;52(4):726 – 736.
  52. Milaneschi Y, Lamers F, Peyrot WJ, et al. Genetic association of major depression with atypical features and obesity-related immu- nometabolic dysregulations. JAMA Psychiatr. 2017;74(12):1214 – 1225.
  53. Pistis G, Milaneschi Y, Vandeleur CL, et al. Obesity and atypical depression symptoms: findings from Mendelian randomization in two European cohorts. Transl Psychiatry. 2021;11(1):96.
  54. Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake. Science. 2023;381(6665):eabl7398.
  55. Adamantidis AR, De Lecea L. Sleep and the hypothalamus. Science. 2023;382(6669):405 – 411.
  56. Savitz J, Harrison NA. Interoception and inflammation in psychi- atric disorders. Biol Psychiatr. 2018;3(6):514 – 524.
  57. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 2015;161(1):119 – 132.
  58. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376 – 1382.
  59. Goldsmith DR, Bekhbat M, Mehta ND, Felger JC. Inflammation- related functional and structural dysconnectivity as a pathway to psychopathology. Biol Psychiatry. 2023;93(5):405 – 418.
  60. Woelfer M, Kasties V, Kahlfuss S, Walter M. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience. 2019;403:93 – 110.
  61. Cosgrove KT, Burrows K, Avery JA, et al. Appetite change profiles in depression exhibit differential relationships between systemic inflammation and activity in reward and interoceptive neuro- circuitry. Brain Behav Immun. 2020;83:163 – 171.
  62. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota – brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241 – 255.
  63. Dekkers KF, Sayols-Baixeras S, Baldanzi G, et al. An online atlas of human plasma metabolite signatures of gut microbiome compo- sition. Nat Commun. 2022;13(1):5370.
  64. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive po- tential of the human gut microbiota in quality of life and depres- sion. Nat Microbiol. 2019;4(4):623 – 632.
  65. Refisch A, Sen ZD, Klassert TE, et al. Microbiome and immuno- metabolic dysregulation in patients with major depressive disor- der with atypical clinical presentation. Neuropharmacology. 2023;235:109568.
  66. Liu JJ, Wei YB, Strawbridge R, et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry. 2020;25(2):339 – 350.
  67. Kraus C, Kautzky A, Watzal V, et al. Body mass index and clinical outcomes in individuals with major depressive disorder: findings from the GSRD European Multicenter Database. J Affect Disord. 2023;335:349 – 357.
  68. Vreijling SR, Chin Fatt CR, Williams LM, et al. Features of immunometabolic depression as predictors of antidepressant treatment outcomes: pooled analysis of four clinical trials. Br J Psychiatry. 2024;224(3):89 – 97.
  69. Wiedlocha M, Marcinowicz P, Krupa R, et al. Effect of antide- pressant treatment on peripheral inflammation markers - a meta- analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt C):217 – 226.
  70. Kohler CA, Freitas TH, Stubbs B, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol. 2018;55(5):4195 – 4206.
  71. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71(10):1259 – 1272.
  72. Jha MK, Wakhlu S, Dronamraju N, Minhajuddin A, Greer TL, Trivedi MH. Validating pre-treatment body mass index as moder- ator of antidepressant treatment outcomes: findings from CO-MED trial. J Affect Disord. 2018;234:34 – 37.
  73. Jha MK, Minhajuddin A, Gadad BS, et al. Can C-reactive proteininform antidepressant medication selection in depressed out- patients? Findings from the CO-MED trial. Psychoneuroendocrinol- ogy. 2017;78:105 – 113.
  74. Köhler-Forsberg O, Lydholm C N, Hjorthøj C, Nordentoft M,Mors O, Benros ME. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr Scand. 2019;139(5):404 – 419.
  75. Bai S, Guo W, Feng Y, et al. Efficacy and safety of anti- inflammatory agents for the treatment of major depressive disor- der: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91(1):21 – 32.
  76. Wittenberg GM, Stylianou A, Zhang Y, et al. Effects of immuno-modulatory drugs on depressive symptoms: a mega-analysis of randomized, placebo-controlled clinical trials in inflammatory dis- orders. Mol Psychiatr. 2020;25(6):1275 – 1285.
  77. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM.Antidepressant activity of anti-cytokine treatment: a systematic re- view and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatr. 2018;23(2):335 – 343.
  78. Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor Necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflamma- tory biomarkers. Arch Gen Psychiatry. 2012;70:31 – 41.
  79. Hellmann-Regen J, Clemens V, Grozinger M, et al. Effect of minocycline on depressive symptoms in patients with treatment- resistant depression: a randomized clinical trial. JAMA Netw Open. 2022;5(9):e2230367.
  80. Baune BT, Sampson E, Louise J, et al. No evidence for clinical ef- ficacy of adjunctive celecoxib with vortioxetine in the treatment of depression: a 6-week double-blind placebo controlled randomized trial. Eur Neuropsychopharmacol. 2021;53:34 – 46.
  81. Zwiep JC, Bet PM, Rhebergen D, et al. Efficacy of celecoxib add-ontreatment for immuno-metabolic depression: protocol of the INFLAMED double-blind placebo-controlled randomized controlled trial. Signature Brain Behav Immun Health. 2023;27:100585.
  82. Wessa CJ,J, Coppens V, El Abdellati K, et al. Efficacy of inflammation-based stratification for add-on celecoxib or minocy- cline in Major Depressive Disorder: protocol of the INSTA-MD double-blind placebo-controlled randomised clinical trial. Brain Behav Immun-Health. 2024 [submitted].
  83. Walker AJ, Kim Y, Borissiouk I, et al. Statins: neurobiological un- derpinnings and mechanisms in mood disorders. Neurosci Biobehav Rev. 2021;128:693 – 708.
  84. Xiao X, Deng H, Li P, Sun J, Tian J. Statin for mood and inflam- mation among adult patients with major depressive disorder: an updated meta-analysis. Front Psychiatry. 2023;14:1203444.
  85. Berk M, Mohebbi M, Dean OM, et al. Youth depression alleviation with anti-inflammatory agents (YoDA-A): a randomised clinical trial of rosuvastatin and aspirin. BMC Med. 2020;18(1):16.
  86. diabetes treatments for depressive symptoms: a systematic review and meta-analysis of clinical trials. Psychoneuroendocrinology. 2018;94:91 – 103.
  87. Colle R, de Larminat D, Rotenberg S, et al. Pioglitazone couldinduce remission in major depression: a meta-analysis. Neuro- psychiatr Dis Treat. 2017;13:9 – 16.
  88. Chen X, Zhao P, Wang W, Guo L, Pan Q. The antidepressant ef- fects of GLP-1 receptor agonists: a systematic review and meta- analysis. Am J Geriatr Psychiatry. 2024;32(1):117 – 127.
  89. Fedewa MV, Hathaway ED, Ward-Ritacco CL, Williams TD, Dobbs WC. The effect of chronic exercise training on leptin: a systematic review and meta-analysis of randomized controlled tri- als. Sports Med. 2018;48(6):1437 – 1450.
  90. Fedewa MV, Hathaway ED, Ward-Ritacco CL. Effect of exercisetraining on C reactive protein: a systematic review and meta- analysis of randomised and non-randomised controlled trials. Br J Sports Med. 2017;51(8):670 – 676.
  91. Hird EJ, Slanina-Davies A, Lewis G, Hamer M, Roiser JP. Frommovement to motivation: a proposed framework to understand the antidepressant effect of exercise. Transl Psychiatry. 2024;14(1):273.
  92. Rethorst CD, Toups MS, Greer TL, et al. Pro-inflammatory cyto- kines as predictors of antidepressant effects of exercise in major depressive disorder. Mol Psychiatr. 2013;18(10):1119 – 1124.
  93. Noetel M, Sanders T, Gallardo-Gomez D, et al. Effect of exercise for depression: systematic review and network meta-analysis of rand- omised controlled trials. BMJ. 2024;384:e075847.
  94. Verhoeven JE, Han LKM, Lever-van Milligen BA, et al. Antide- pressants or running therapy: comparing effects on mental and physical health in patients with depression and anxiety disorders. J Affect Disord. 2023;329:19 – 29.
  95. Vreijling SR, Penninx B, Verhoeven JE, et al. Running therapy orantidepressants as treatments for immunometabolic depression in patients with depressive and anxiety Disorders: a secondary analysis of the MOTAR study. Brain Behav Immun. 2024;123:876 – 883.
  96. Ramos-Lopez O, Martinez-Urbistondo D, Vargas-Nunez JA,Martinez JA. The role of nutrition on meta-inflammation: insights and potential targets in communicable and chronic disease man- agement. Curr Obes Rep. 2022;11(4):305 – 335.
  97. Tolkien K, Bradburn S, Murgatroyd C. An anti-inflammatory diet as a potential intervention for depressive disorders: a systematic re- view and meta-analysis. Clin Nutr. 2019;38(5):2045 – 2052.
  98. Firth J, Marx W, Dash S, et al. The effects of dietary improvementon symptoms of depression and anxiety: a meta-analysis of ran- domized controlled trials. Psychosom Med. 2019;81(3):265 – 280.
  99. Jacka FN, O ’ Neil A, Opie R, et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘ SMILES ’ trial). BMC Med. 2017;15(1):23.
  100. Bizzozero-Peroni B, Martínez-Vizcaíno V, Fernández-Rodríguez R, et al. The impact of the Mediterranean diet on alleviating depressive symptoms in adults: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2024:nuad176. https://doi. org/10.1093/nutrit/nuad176.
  101. Paans NPG, Bot M, van Strien T, Brouwer IA, Visser M, Penninx B. Eating styles in major depressive disorder: results from a large- scale study. Signature J Psychiatr Res. 2018;97:38 – 46.
  102. Vreijling SR, Penninx BWJH, Bot M, et al. Effects of dietary in- terventions on depressive symptom profiles: results from the MooD- FOOD depression prevention study. Psychol Med. 2021;52:3580 – 3589.
  103. Donnelly N, Tsang R, Foley ÈM, Fraser H, Hanson A,Khandaker GM. Blood immuno-metabolic biomarker signatures of depression and affective symptoms in young adults. medRxiv. 2024. https://doi.org/10.1101/2024.06.03.24308351.
  104. Morris G, Berk M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med. 2015;13:68.
  105. Dantzer R, O ’ Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46 – 56.
  106. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56(11):819 – 824